football stadium
football logo

Ranking the European top-five-leagues

Did you ever wonder how your favourite team comes off among the European top teams?

Here you can find out: rank-O-football is the definitive team ranking based on network science and statistics!

Its revolutionary method ranks teams across leagues. The different strengths of leagues are taken into account automatically by the algorithm. We do not use hidden weights or any other unobjective factors.

Just all teams of the five European top leagues, all results of each national and European competition, and a simple but clever algorithm!

Use it freely to compare teams, predict games, and settle arguments with your friends!


Current top-3-teams/leagues:

Rank Team
1 Man City
2 Chelsea
3 Real Madrid
Rank League
1 Premier League
2 Bundesliga
3 Primera Division


Click on the tabs above to see full tables.


Team ranking, all five European top leagues, Season 2020/21

Rank Team League Points
1 Man City PL 1.82
2 Chelsea PL 1.68
3 Real Madrid PD 1.5
4 Man United PL 1.23
5 Bayern M BL 1.17
6 Liverpool PL 1.15
7 PSG L1 1.08
8 Inter SA 0.95
9 Lille L1 0.91
10 Atleti PD 0.88
11 Leicester City PL 0.84
12 Atalanta SA 0.69
13 Barça PD 0.68
14 Tottenham PL 0.66
15 West Ham PL 0.65
16 Milan SA 0.65
17 Arsenal PL 0.63
18 Juventus SA 0.63
19 Sevilla FC PD 0.63
20 RB Leipzig BL 0.63
21 Olympique Lyon L1 0.6
22 Leeds United PL 0.59
23 Monaco L1 0.58
24 Napoli SA 0.57
25 Everton PL 0.48
26 Dortmund BL 0.45
27 Wolfsburg BL 0.37
28 Frankfurt BL 0.35
29 Lazio SA 0.35
30 Aston Villa PL 0.32
31 M'gladbach BL 0.2
32 Real Sociedad PD 0.19
33 Villarreal PD 0.14
34 Leverkusen BL 0.13
35 Marseille L1 0.11
36 Real Betis PD 0.11
37 Sassuolo SA 0.1
38 Roma SA 0.09
39 RC Lens L1 0.06
40 Union Berlin BL 0.05
41 Wolverhampton PL 0.04
42 Crystal Palace PL 0.01
43 Stade Rennais L1 -0.02
44 Brighton Hove PL -0.02
45 Southampton PL -0.04
46 Newcastle PL -0.05
47 Montpellier L1 -0.05
48 Celta PD -0.09
49 Freiburg BL -0.12
50 Stuttgart BL -0.14
51 Sampdoria SA -0.16
52 Hoffenheim BL -0.22
53 Cádiz CF PD -0.24
54 Burnley PL -0.24
55 Athletic PD -0.25
56 Levante PD -0.28
57 Valencia PD -0.29
58 FC Metz L1 -0.31
59 Nice L1 -0.32
60 Angers SCO L1 -0.34
61 Osasuna PD -0.35
62 Mainz BL -0.35
63 Granada PD -0.36
64 Brest L1 -0.37
65 Saint-Étienne L1 -0.37
66 Hertha BSC BL -0.41
67 Stade de Reims L1 -0.41
68 Fulham PL -0.42
69 Bordeaux L1 -0.43
70 Verona SA -0.44
71 Strasbourg L1 -0.44
72 Bielefeld BL -0.44
73 Alavés PD -0.44
74 Lorient L1 -0.46
75 Nantes L1 -0.46
76 West Brom PL -0.47
77 Bologna SA -0.48
78 Genoa SA -0.49
79 1. FC Köln BL -0.49
80 Getafe PD -0.5
81 Elche PD -0.52
82 Bremen BL -0.53
83 Fiorentina SA -0.53
84 Udinese SA -0.55
85 Spezia Calcio SA -0.58
86 Augsburg BL -0.58
87 Torino SA -0.6
88 Huesca PD -0.62
89 Cagliari SA -0.64
90 Nîmes Ol. SA -0.65
91 Valladolid PD -0.69
92 Eibar PD -0.75
93 Sheffield Utd PL -0.79
94 Benevento SA -0.83
95 Crotone SA -1.03
96 Schalke BL -1.05
97 Dijon FCO L1 -1.08
98 Parma SA -1.17

Ranking of the five European top leagues, Season 2020/21

Rank League Sum of points
1 Premier League 8.07
2 Bundesliga -0.98
3 Primera Division -1.25
4 Ligue 1 -1.72
5 Serie A -4.12

Method and sources

The ranking uses an adapted version of Google's page-rank algorithm.

We include all games of the five European top leagues (England, Germany, Spain, Italy, France) plus all their games in the Champions League and Europa League.

With that we construct a graph where teams are the nodes of the graph. A win in a game is a directed link from the loser to the winner.

Page rank is used to convert into a Markovian network and its steady state gives the respective points for each team.

What do the points mean? Loosely speaking, positive numbers mean that the team has won more often than lost. Negative numbers mean the team lost more often than won. However, by construction of the page rank algorithm, the strength of the opposite team is important. E.g., a win against a top team counts more than a win against a team at the end of the table.

This also implies that the number of games that a team has played is not important. In other words, the method allows to compare teams that have played different number of games (for instance because they do or do not participate in the international leagues.)

(under construction)


This page was developed in 2018 as a project in network science and data analysis. Please support it by spreading the news and the link.

I am a scientist working on data analysis tools. Go to my linkedin page for more information on other projects.

(under construction)

Please send any inquiries to:


Datenschutzerklärung:


Die Betreiber dieser Seiten speichern wissentlich keine persönlichen Daten ab und die Nutzung unserer Webseite ist in der Regel ohne Angabe personenbezogener Daten möglich.

Wir weisen allerdings darauf hin, dass die Datenübertragung im Internet (z.B. bei der Kommunikation per E-Mail) Sicherheitslücken aufweisen kann. Ein lückenloser Schutz der Daten vor dem Zugriff durch Dritte ist nicht möglich.