football stadium
football logo

Ranking the European top-five-leagues

NEW SEASON 2022/23

Did you ever wonder how your favourite team comes off among the European top teams?

Here you can find out: rank-O-football is the definitive team ranking based on network science and statistics!

Its revolutionary method ranks teams across leagues. The different strengths of leagues are taken into account automatically by the algorithm. We do not use hidden weights or any other unobjective factors.

Just all teams of the five European top leagues, all results of each national and European competition, and a simple but clever algorithm!

Use it freely to compare teams, predict games, and settle arguments with your friends!


Current top-3-teams/leagues:

Rank Team
1 Bayern
2 Napoli
3 Milan
Rank League
1 Bundesliga
2 Premier League
3 Serie A


Click on the tabs above to see full tables.


Team ranking, all five European top leagues, Season 2021/22

Rank Team League Points
1 Bayern BL 1.86
2 Napoli SA 1.82
3 Milan SA 1.74
4 Monaco FL 1.7
5 Real Madrid PD 1.63
6 PSG FL 1.54
7 Union Berlin BL 1.45
8 Mainz BL 1.35
9 Man City PL 1.32
10 M'gladbach BL 1.31
11 RC Lens FL 1.29
12 Arsenal PL 1.21
13 Hoffenheim BL 1.16
14 Dortmund BL 1.12
15 Man United PL 1.12
16 Freiburg BL 1.1
17 Udinese SA 1.1
18 Brighton Hove PL 1.02
19 Fulham PL 0.98
20 Newcastle PL 0.89
21 Tottenham PL 0.86
22 Real Betis PD 0.78
23 Augsburg BL 0.77
24 Lorient FL 0.72
25 Atalanta SA 0.69
26 Stade Rennais FL 0.45
27 Fiorentina SA 0.44
28 Barça PD 0.43
29 Real Sociedad PD 0.39
30 Inter SA 0.36
31 Roma SA 0.34
32 Hertha BSC BL 0.34
33 Liverpool PL 0.33
34 Leverkusen BL 0.28
35 Marseille FL 0.26
36 Frankfurt BL 0.24
37 Lecce SA 0.23
38 Chelsea PL 0.21
39 Crystal Palace PL 0.21
40 Olympique Lyon FL 0.17
41 Mallorca PD 0.16
42 RB Leipzig BL 0.15
43 Atleti PD 0.13
44 Troyes FL 0.12
45 Torino SA 0.06
46 Bournemouth PL 0.05
47 Nantes FL 0.01
48 Rayo Vallecano PD 0.01
49 Osasuna PD -0.01
50 Sassuolo SA -0.07
51 Wolverhampton PL -0.08
52 Getafe PD -0.08
53 Stuttgart BL -0.11
54 Bremen BL -0.11
55 Lille FL -0.17
56 Valencia PD -0.19
57 Toulouse FL -0.23
58 Lazio SA -0.24
59 Leeds United PL -0.29
60 Cremonese SA -0.3
61 Clermont Foot FL -0.31
62 Girona PD -0.33
63 Aston Villa PL -0.34
64 Monza SA -0.34
65 Stade de Reims FL -0.34
66 Villarreal PD -0.35
67 Salernitana SA -0.4
68 Spezia Calcio SA -0.49
69 Wolfsburg BL -0.5
70 Schalke BL -0.5
71 AC Ajaccio FL -0.53
72 West Ham PL -0.57
73 Auxerre FL -0.57
74 Empoli SA -0.58
75 Nottingham PL -0.63
76 Athletic PD -0.63
77 Montpellier FL -0.63
78 Bologna SA -0.65
79 Southampton PL -0.67
80 Celta PD -0.7
81 Juventus SA -0.74
82 Brentford PL -0.77
83 Verona SA -0.81
84 Cádiz CF PD -0.82
85 1. FC Köln BL -0.94
86 Everton PL -0.97
87 Bochum BL -1.07
88 Nice FL -1.1
89 Leicester City PL -1.19
90 Espanyol PD -1.29
91 Sampdoria SA -1.34
92 Brest FL -1.4
93 Elche PD -1.45
94 Strasbourg FL -1.51
95 Angers SCO FL -1.55
96 Valladolid PD -1.91
97 Sevilla FC PD -2.36
98 Almería PD -2.77

Ranking of the five European top leagues, Season 2021/22

Rank League Sum of points
1 Bundesliga 7.9
2 Premier League 2.69
3 Serie A 0.82
4 Ligue 1 -2.08
5 Primera Division -9.36

Method and sources

The ranking uses an adapted version of Google's page-rank algorithm.

We include all games of the five European top leagues (England, Germany, Spain, Italy, France) plus all their games in the Champions League and Europa League.

With that we construct a graph where teams are the nodes of the graph. A win in a game is a directed link from the loser to the winner.

Page rank is used to convert into a Markovian network and its steady state gives the respective points for each team.

What do the points mean? Loosely speaking, positive numbers mean that the team has won more often than lost. Negative numbers mean the team lost more often than won. However, by construction of the page rank algorithm, the strength of the opposite team is important. E.g., a win against a top team counts more than a win against a team at the end of the table.

This also implies that the number of games that a team has played is not important. In other words, the method allows to compare teams that have played different number of games (for instance because they do or do not participate in the international leagues.)

(under construction)


This page was developed in 2018 as a project in network science and data analysis. Please support it by spreading the news and the link.

I am a scientist working on data analysis tools. Go to my linkedin page for more information on other projects.

(under construction)

Please send any inquiries to:


Datenschutzerklärung:


Die Betreiber dieser Seiten speichern wissentlich keine persönlichen Daten ab und die Nutzung unserer Webseite ist in der Regel ohne Angabe personenbezogener Daten möglich.

Wir weisen allerdings darauf hin, dass die Datenübertragung im Internet (z.B. bei der Kommunikation per E-Mail) Sicherheitslücken aufweisen kann. Ein lückenloser Schutz der Daten vor dem Zugriff durch Dritte ist nicht möglich.